CST207 DESIGN AND ANALYSIS OF ALGORITHMS

Lecture 8: Backtracking

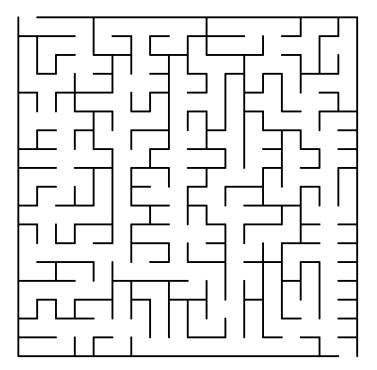
Lecturer: Dr. Yang Lu Email: luyang@xmu.edu.my Office: A1-432 Office hour: 2pm-4pm Mon & Thur

Outlines

- n-Queens Problem
- The Sum-of-Subsets Problem
- Graph Coloring
- The Hamiltonian Circuits Problem
- The 0-1 Knapsack Problem

Backtracking

- A simple and straightforward strategy to escape from a maze is:
 - Go as deep as possible until reach a dead end.
 - Go back to the last fork and choose another path.
- If we have a sign at the fork to show dead ends, we can avoid that path.
 - This is backtracking.
- Backtracking is used to solve problems in which a sequence of objects is chosen from a specified set so that the sequence satisfies some criterion.



A maze

Image source: https://upload.wikimedia.org/wikipedia/commons/thumb/2/28/Prim_Maze.svg/1200px-Prim_Maze.svg.png

Depth-First Search

- A preorder tree traversal is a depth-first search (DFS) of the tree.
 - The root is visited first, and a visit to a node is followed immediately by visits to all descendants of the node.
- Backtracking is a modified depth-first search of a tree.

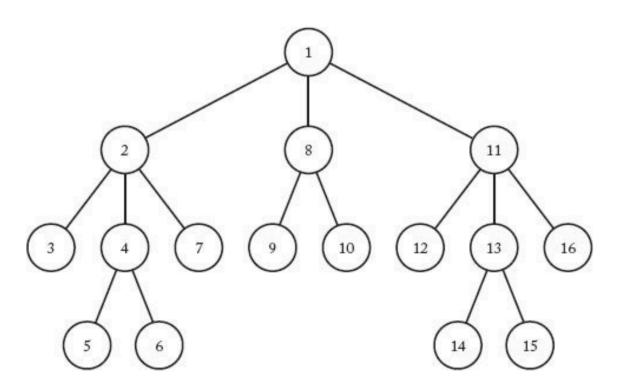
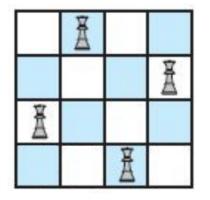


Image source: Figure 5.1, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

n-QUEENS PROBLEM

- The goal in this problem is to position n queens on an n×n chessboard so that no two queens threaten each other.
 - No two queens may be in the same row, column, or diagonal.
- The sequence in this problem is the n positions in which the queens are placed.
- The *set* for each choice is the n^2 possible positions on the chessboard.
- The *criterion* is that no two queens can threaten each other.
- The *n*-Queens problem is a generalization of its instance when n = 8, which is the instance using a standard chessboard.
 - For the sake of brevity, we will illustrate backtracking using the instance when n = 4.



- Our task is to position four queens on a 4×4 chessboard so that no two queens threaten each other.
- We can immediately simplify matters by realizing that no two queens can be in the same row.
- The instance can then be solved by assigning each queen a different row and checking which column combinations yield solutions.
 - There are $4 \times 4 \times 4 \times 4 = 256$ candidate solutions.

- We can create the candidate solutions by constructing a *state space tree*.
- A path from the root to a leaf is a candidate solution.
- Actually, we don't need to check every leaf.
 - We may early stop if we find out that this path definitely leads to a dead end.

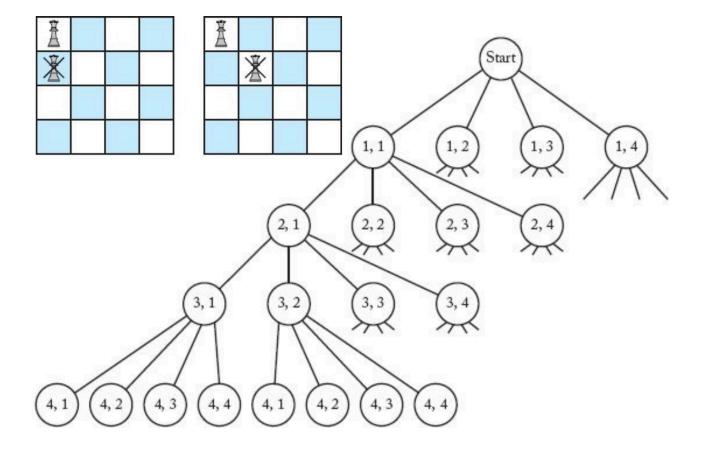
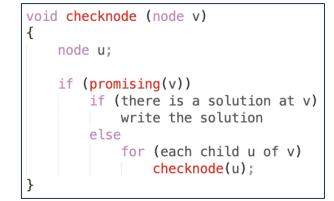


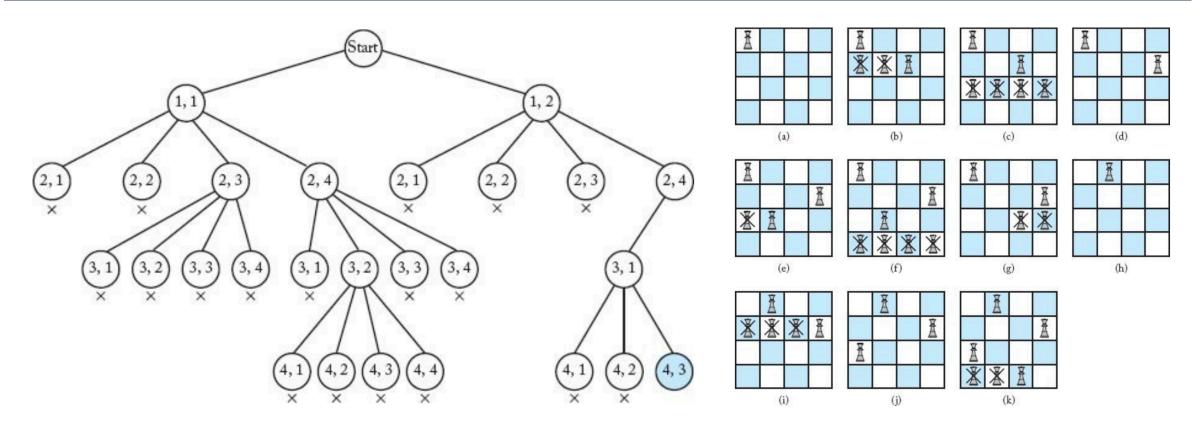
Image source: Figure 5.2-5.3, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

- Backtracking is the procedure whereby, after determining that a node can lead to nothing but dead ends, we go back ("backtrack") to the node's parent and proceed with the search on the next child.
- We call a node *nonpromising* if when visiting the node we determine that it cannot possibly lead to a solution. Otherwise, we call it *promising*.
- The promising checking is done with DFS.
- This process called *pruning* the state space tree, and the subtree consisting of the visited nodes is called the *pruned state space tree*.

- The root of the state space tree is passed to checknode at the top level.
- A visit to a node consists of first checking whether it is promising.
 - If it is promising and there is a solution at the node, the solution is printed.
 - If there is not a solution at a promising node, the children of the node are visited.
- We call it the *promising function* for the algorithm, which is different in each application of backtracking.
- A backtracking algorithm is same as DFS, except that the children of a node are visited only when the node is promising and there is not a solution at the node.



Backtracking of *n*-Queens Problem



The backtracking algorithm only checks 27 nodes, while DFS checks 155 nodes before finding that same solution.

Image source: Figure 5.4-5.5, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Backtracking

- Notice that a backtracking algorithm **does not need to actually create a tree**.
 - Usually, they are implemented by recursion (thus a stack).
- Rather, it only needs to keep track of the values in the current branch being investigated.
- The state space tree exists implicitly in the algorithm because it is not actually constructed.

- For each row, we put one queen. Thus, the promising function only needs to check if two queens are in the same column or diagonal.
- Let col(i) be the column where the queen in the *i*th row is located.
- Condition that two queens are in the same column:

col(i) = col(k).

• Condition that two queens are in the same diagonal :

col(i) - col(k) = i - k or col(i) - col(k) = k - i.

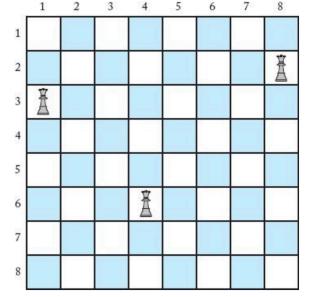
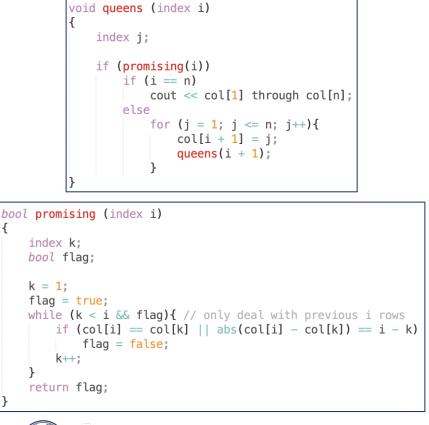


Image source: Figure 5.6, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Pseudocode of *n*-Queens Problem

- As usual, non-changing variables n and col are not inputs to the recursive function. They are defined globally.
- The top level call is queens(0).
- For the terminate condition i == n, the program doesn't stop, until all solutions are found.



nouler Science Department of Xiamen

Analysis of *n*-Queens Problem

For DFS, the tree contains 1 node at level 0, n nodes at level 1, n² nodes at level 2, ..., and nⁿ nodes at level n. The total number of nodes is

$$1 + n + n^2 + n^3 + \dots + n^n = \frac{n^{n+1}1}{n-1}.$$

• For backtracking, if we only check the column, the upper bound of promising nodes are

$$1 + n + n(n - 1) + n(n - 1)(n - 2) + \dots + n!$$

- For *n* = 8, DFS has 19,173,961 nodes while backtracking only has at most 109,601 promising nodes.
- Thus, the purpose of backtracking is to use promising function to improve DFS as much as possible.
 - Save time by stop earlier.

THE SUM-OF-SUBSETS PROBLEM

The Sum-of-Subsets Problem

- In the Sum-of-Subsets problem, there are *n* positive integers (weights) *w_i* and a positive integer *W*.
 - Similar to 0-1 Knapsack problem but without value.
- The goal is to find all subsets of the integers that sum to W.
- Example:
 - Suppose that n = 5, W = 21, and

$$w_1 = 5, w_2 = 6, w_3 = 10, w_4 = 11, w_5 = 16.$$

• The solutions is $\{w_1, w_2, w_3\}$, $\{w_1, w_5\}$ and $\{w_3, w_4\}$ because

$$w_1 + w_2 + w_3 = 5 + 6 + 10 = 21,$$

 $w_1 + w_5 = 5 + 16 = 21,$
 $w_3 + w_4 = 10 + 11 = 21.$

The Sum-of-Subsets Problem

- One approach is to create a state space tree.
- Each subset is represented by a path from the root to a leaf.
 - We go to the left from the root to include w₁, and we go to the right to exclude w₁.
 - We go to the left from a node at level 1 to include w₂, and we go to the right to exclude w₂.
- When we include w_i , we write w_i on the edge where we include it. When we do not include w_i , we write 0.

...

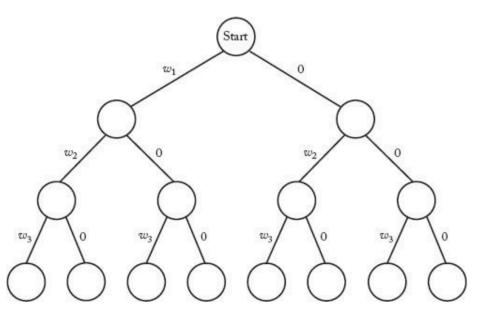


Image source: Figure 5.7, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

- If we sort the weights in nondecreasing order before doing the search, there is an obvious sign telling us that a node is nonpromising.
- Let weight to be the sum of the weights that have been included up, and remain is the sum of the weight that is remained to be checked.
- There are two cases that a node at the *i*th level is nonpromising:
 - Case 1: Including w_{i+1} exceeds W:

```
weight + w_{i+1} > W.
```

• Case 2: Including all the remaning can't reach *W*:

weight + remain < W.

Example

n = 4, W = 130 $w_1 = 3$ 3 0 $w_2 = 4$ 3 0 ▶ 0+11<13 $w_3 = 5$ 12+6>13 12 8 4 3 9 4+6<13 × × $w_4 = 6$ 8+6>13 3+6<13 9+6>13 7 13 X 7+0<13 XIAMEN UNIVERSITY MALAYSIA 厦門大學馬來西亞分校 厦门大学信息学院 夏 つた了 计算机科学系 (Čj) SCHOOL OF INFORMATICS XIAMEN UNIVERSITY mputer Science Department of Xiamen University

Image source: Figure 5.9, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Pseudocode

- n, w, W and include are defined globally.
- The top-level call is

```
sum_of_subsets(0, 0, remain)
```

where remain is initialized as:

$$remain = \sum_{j=1}^{n} w[j].$$

 Actually, we don't need to test if i==n, because it has been tested by weight+remain>=W in function promising.

```
void sum_of_subsets (index i, int weight, int remain)
{
    if (promising(i))
        if (weight == W)
            cout << include[1] through include[i];
        else{
            include[i + 1] = "yes";
            sum_of_subsets(i + 1, weight + w[i + 1], remain - w[i + 1]);
            include[i + 1] = "no";
            sum_of_subsets(i + 1, weight, remain - w[i + 1]);
            }
    bool promising (index i);
    {
        return (weight + remain >= W) && (weight == W || weight + w[i + 1] <= W);
    }
}</pre>
```

When i==n, remain must be 0.

GRAPH COLORING

- The *m*-Coloring problem concerns finding all ways to color an undirected graph using at most *m* different colors, so that no two adjacent vertices are the same color.
- There is no solution to the 2-Coloring problem for this example graph.
- One solution to the 3-Coloring problem for this graph is as follows:
 - $\begin{array}{c} v_1 & \text{color 1} \\ v_2 & \text{color 2} \\ v_3 & \text{color 3} \\ v_4 & \text{color 2} \end{array}$

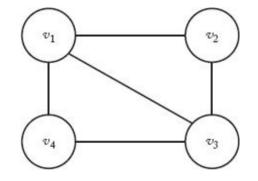


Image source: Figure 5.10, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

- An important application of graph coloring is the coloring of maps.
- In mathematics, a very famous problem is called the four color theorem.
 - It has been proved with a computer software in 1976.
- Given any separation of a plane into contiguous regions, producing a figure called a map, no more than four colors are required to color the regions of the map so that no two adjacent regions have the same color.

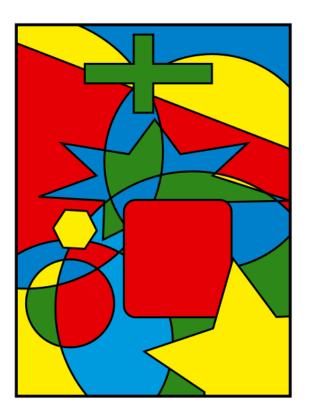
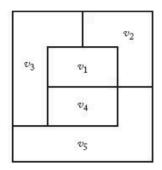


Image source: https://en.wikipedia.org/wiki/Four color theorem

- A graph is called *planar* if it can be drawn in a plane in such a way that no two edges cross each other.
 - However, if we were to add the edges (v₁, v₅) and (v₂, v₄) it would no longer be planar.
- To every map there corresponds a planar graph.
- The *m*-Coloring problem for planar graphs is to determine how many ways the map can be colored, using at most *m* colors, so that no two adjacent regions are the same color.



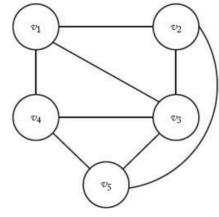


Image source: Figure 5.11, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

...

AMEN UNIVERSITY MALAYSIA

門大學馬來西亞分校

- A straightforward state space tree is:
 - Each possible color is tried for vertex v₁ at level 1;
 - Each possible color is tried for vertex v₂ at level 2;
 - Until each possible color has been tried for vertex v_n at level n.
- Each path from the root to a leaf is a candidate solution.
- We can backtrack in this problem because a node is nonpromising if a two adjacent vertices are colored by the same color.

Start

V4

US

 v_1

v3

Pseudocode of Graph Coloring

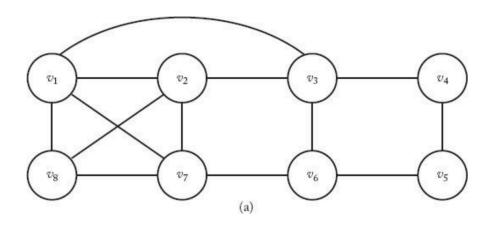
- The top level call is m_coloring(0).
- The pseudocode is exactly same as the n-Queens problem, except the if-condition in promising function.

<pre>void m_coloring (index i) { int color;</pre>	<pre>bool promising (index i) { index j; bool flag;</pre>
<pre>if (promising(i)) if (i == n) cout << vcolor[1] through vcolor[n]; else for (color = 1; color <= m; color++){ vcolor[i + 1] = color; m_coloring(i + 1); } }</pre>	<pre>flag = true; j = 1; while (j < i && flag){ if (W[i][j] && vcolor[i] == vcolor[j]) flag = false; j++; } return flag; }</pre>

THE HAMILTONIAN CIRCUITS PROBLEM

The Hamiltonian Circuits Problem

- Given a connected, undirected graph, a *Hamiltonian Circuit* (also called a tour) is a path that starts at a given vertex, visits each vertex in the graph exactly once, and ends at the starting vertex.
- The graph in Figure (a) contains the Hamiltonian Circuit [v₁, v₂, v₈, v₇, v₆, v₅, v₄, v₃, v₁], but the one in Figure (b) does not contain a Hamiltonian Circuit.



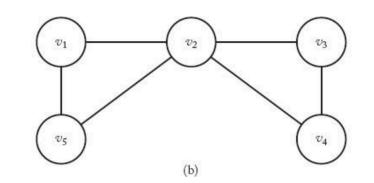


Image source: Figure 5.13, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

The Hamiltonian Circuits Problem

- A state space tree for this problem is as follows.
 - Put the starting vertex at level 0 in the tree; call it the zeroth vertex on the path.
 - At level 1, consider each vertex other than the starting vertex as the first vertex.
 - At level 2, consider each of these same vertices as the second vertex, and so on.
 - Finally, at level n 1, consider each of these same vertices as the (n 1)st vertex.
- Consider backtrack in this state space tree:
 - The *i*th vertex on the path must be adjacent to the (i 1)st vertex on the path.
 - The (n-1)st vertex must be adjacent to the 0th vertex (the starting one).
 - The *i*th vertex cannot be one of the first i 1 vertices.

The Hamiltonian Circuits Problem

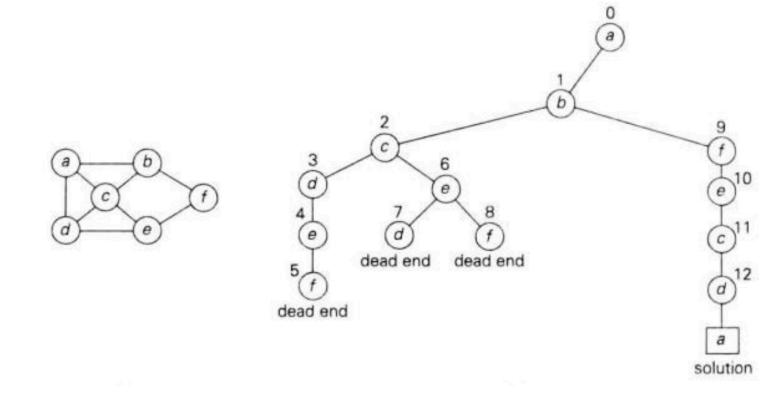


Image source: http://www.brainkart.com/article/Hamiltonian-Circuit-Problem 7981/

Pseudocode of the Hamiltonian Circuits Problem

The top-level call is: vindex[0]=1; hamiltonian(0);

```
void hamiltonian (index i)
{
    index j;
    if (promising(i))
        if (i == n - 1)
            cout << vindex[0] through vindex[n - 1];
        else
            for (j = 2; j <= n; j++){
                vindex[i + 1] = j;
                hamiltonian(i + 1);
            }
}</pre>
```

```
bool promising (index i)
{
    index j;
    bool flag;
    if (i == n - 1 \& W[vindex[n - 1]][vindex[0]])
        flag = false;
    else if (i > 0 \& |W[vindex[i - 1]][vindex[i]])
        flag = false;
    else{
        flag = true;
        i = 1;
        while (j < i \&\& flag){
            if (vindex[i] == vindex[j])
                flag = false;
           j++;
    }
    return flag;
```


THE 0-1 KNAPSACK PROBLEM

Knapsack Problem Recall

- Problem description:
 - Given n items and a "knapsack."
 - Item *i* has weight $w_i > 0$ and has value $v_i > 0$.
 - Knapsack has capacity of *W*.
 - Goal: Fill knapsack so as to maximize total value.
- Mathematical description:
 - Given two *n*-tuples of positive numbers $\langle v_1, v_2, ..., v_n \rangle$ and $\langle w_1, w_2, ..., w_n \rangle$, and W > 0, we wish to determine the subset $T \subseteq \{1, 2, ..., n\}$ that

maximize
$$\sum_{i \in T} v_i$$
 subject to $\sum_{i \in T} w_i \le W$

• Can backtracking solve this problem?

The 0-1 Knapsack Problem

- We can solve this problem using a state space tree exactly like the one in the Sum-of-Subsets problem.
 - We go to the left from the root to include the first item, and we go to the right to exclude it.
 - We go to the left from a node at level 1 to include the second item, and we go to the right to exclude it.
 - •
 - Each path from the root to a leaf is a candidate solution.

The 0-1 Knapsack Problem

- This problem is different from the others discussed in this chapter in that it is an optimization problem.
 - It finds the maximum value, rather than a solution satisfying some conditions.
- We do not know if a node contains a solution until the search is over.
- If the items included up to a node have a greater total profit than the best solution so far, we change the value of the best solution so far.
 - However, we may still find a better solution at one of the node's descendants (by including more items).
 - Therefore, for optimization problems we always visit a promising node's children.

- Similar to the sum-of-subsets problem, there are two cases that a node is nonpromising:
 - Case 1: Weights of included items exceeds W: $weight \ge W$.
 - *weight* = *W* is also nonpromising because it may not be a solution and it cannot expand to its children.
 - Case 2: Even including all the remaining possible items can't exceed the existing best profit.

- For the second case, we should calculate the profit bound of including all remaining possible items.
 - We use the idea of fractional knapsack with greedy approach, because it can bring us the upper bound.
 - We first sort the items in nonincreasing order according to the values of v_i/w_i .
 - The profit bound is calculated by fill the knapsack with fractional items in this order.
- For example, n = 4, W = 16:
 - If we don't include any item yet, the profit bound is

$$40 + 30 + (16 - 2 - 5) \times 5 = 115.$$

If now we include item 1 and don't include item 2, the profit bound is

 $40 + 50 + (16 - 2 - 10) \times 2 = 98.$

i	v_i	wi	v_i/w_i
1	\$40	2kg	20\$/kg
2	\$30	5kg	6\$/kg
3	\$50	10kg	5\$/kg
4	\$10	5kg	2\$/kg

- Suppose the node is at level *i*, we first calculate *k* such that the level *k* is the one that would bring the sum of the weights *exceeds* W.
- Then we have:

AMEN UNIVERSITY MALAY

$$totweight = weight + \sum_{j=i+1}^{k-1} w_j,$$

$$bound = profit + \sum_{j=i+1}^{k-1} v_j + (W - totweight) \times \frac{v_k}{w_k}.$$
Profit from first Capacity available Profit per unit weight for kth item Weight for kth item Weight for kth item Keight for kth

SCHOOL OF INFORMATICS XIAMEN UNIVERSIT

Computer Science Department of Xiamen University

i	v_i	w _i	v_i/w_i
1	\$40	2kg	20\$/kg
2	\$30	5kg	6\$/kg
3	\$50	10kg	5\$/kg
4	\$10	5kg	2\$/kg

XIAMEN UNIVERSITY MALAYSIA 厦門大學馬來西亞分校

W = 16

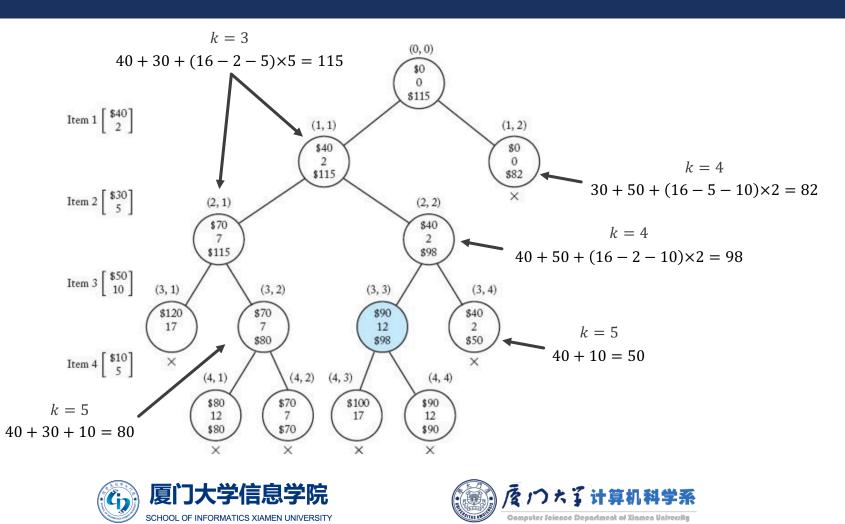


Image source: Figure 5.14, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Pseudocode of the 0-1 Knapsack Problem

Top level call

```
numbest = 0;
maxprofit = 0;
knapsack(0, 0, 0);
cout << maxprofit;</pre>
for (j = 1; j <= numbest; j++)</pre>
    cout << bestset[i];</pre>
```

void knapsack (index i, int profit, int weight) {

if (weight <= W && profit > maxprofit){ maxprofit = profit; numbest = i; bestset = include; }

if (promising(i)){

```
include[i + 1] = "yes";
knapsack(i + 1, profit + v[i + 1], weight + w[i + 1]);
include[i + 1] = "no";
kanpsack(i + 1, profit, weight);
```

```
bool promising (index i)
    index j, k;
    int totweight;
    float bound;
    if (weight >= W)
        return false:
    else{
        j = i + 1;
        bound = profit;
        totweight = weight;
        while (j \le n \&\& totweight + w[j] \le W)
            totweight = totweight + w[j];
            bound = bound + v[j];
            j++;
        k = j;
        if (k \ll n)
            bound = bound + (W - totweight) * v[k] / w[k];
        return bound > maxprofit;
```


ł

Conclusion

General process of developing a backtracking algorithm:

- Construct a state space tree.
- Design a promising function to stop at some nonpromising nodes and thus avoid full DFS over this state space tree.

Conclusion

After this lecture, you should know:

- What is the difference between DFS and backtracking.
- What is a state space tree.
- What is a promising function.
- What kind of problems can be solved by backtracking.

Thank you!

- Any question?
- Don't hesitate to send email to me for asking questions and discussion. ③

